
Idyll: A Markup Language for Authoring and
Publishing Interactive Articles on the Web

Matthew Conlen
University of Washington

Seattle, WA
mconlen@cs.washington.edu

Jeffrey Heer
University of Washington

Seattle, WA
jheer@cs.washington.edu

ABSTRACT
The web has matured as a publishing platform: news outlets
regularly publish rich, interactive stories while technical writ-
ers use animation and interaction to communicate complex
ideas. This style of interactive media has the potential to en-
gage a large audience and more clearly explain concepts, but
is expensive and time consuming to produce. Drawing on
industry experience and interviews with domain experts, we
contribute design tools to make it easier to author and publish
interactive articles. We introduce Idyll, a novel “compile-to-
the-web” language for web-based interactive narratives. Idyll
implements a flexible article model, allowing authors control
over document style and layout, reader-driven events (such as
button clicks and scroll triggers), and a structured interface
to JavaScript components. Through both examples and first-
use results from undergraduate computer science students, we
show how Idyll reduces the amount of effort and custom code
required to create interactive articles.

Author Keywords
Artifact or System; Prototyping/Implementation; Interaction
Design; Programming/Development Support; Storytelling;
Visualization; Programming Languages;

INTRODUCTION
Publications like the New York Times, the Washington Post, the
Guardian, and FiveThirtyEight are known for producing high-
quality multimedia narratives. Often referred to as interactives,
these stories have the potential to engage a large audience:
in 2013 the most read story in the New York Times was an
interactive quiz; in 2014, ten of their forty most read stories
were from the Upshot, a section known for publishing rich
data-driven stories. The data visualization research community
has attempted to characterize the techniques used in these
articles, and have suggested research opportunities in creating
tools to drive the production of interactive narratives.

High-quality production pieces are expensive and time con-
suming to produce. They require custom code, which is often
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

UIST ’18, October 14–17, 2018, Berlin, Germany

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-5948-1/18/10. . . $15.00

DOI: https://doi.org/10.1145/3242587.3242600

Figure 1. An Idyll article that interactively links text with visual demon-
strations to explain the Barnes-Hut approximation for simulating physi-
cal forces. The visualization on the right keeps a fixed position, updating
as the user progresses through the article and interacts with the text.

developed by non-expert programmers under the stress of a
deadline. Because of this, the resulting web pages can suffer
from performance issues (such as being slow to load, espe-
cially on mobile browsers), and the code itself may be poorly
structured and hard to reuse. In order to improve code qual-
ity and decrease development time, some newsrooms create
internal frameworks that facilitate common tasks [31, 40, 41].
These frameworks, however, require both a large initial effort
and maintenance over time, making them inaccessible to all
but the most well-staffed organizations.

In this paper, we contribute Idyll, a novel domain specific
language (DSL) designed for authoring interactive narratives.
Idyll targets a balance between expressiveness and readability
in its programs, while taking production-quality technical re-
quirements into account. We believe these features make Idyll
well-suited to provide authors with a way to quickly create
and publish interactive articles in a production environment.

Idyll combines a human-readable markup language with a
reactive variable system, and provides a straightforward way
to embed JavaScript components in-line with text. Idyll fo-
cuses on making it easy to orchestrate the presentation of the
article based on variable state. This allows article behavior
to be declaratively specified, removing a large class of code
that typically needs to be written when custom interactives
are developed, including code that ties HTML elements to
JavaScript variables, custom event listeners that trigger page
updates, and custom data bindings in the view layer.

https://doi.org/10.1145/3242587.3242600

Readability

Markdown
BBCode

Visdown

TangleDown

ArchieML

Idyll Markup
(no custom components)

Idyll Markup
(custom components)

Idyll

Components
Tangle.js

Mavo

E
x

p
re

s
s

iv
e

n
e

s
s

CUSTOM COMPONENTS

NO CUSTOM COMPONENTS

HTML CLEAN MARKUP

Figure 2. Comparing the readability and expressiveness of web-based
publishing tools. Many languages focus on providing a legible author-
ing experience, or on facilitating the implementation of complex designs.
Idyll aims to achieve high readability of its text, while maintaining ex-
pressiveness. It does this by imposing a clean, structured interface be-
tween text and interactive elements, providing a standard library, and
by allowing users to write custom code where necessary.

Idyll includes a standard library of components that can be
used to add interactivity to articles without the need to write
JavaScript, and we show how these components cover a wide
range of use cases common to interactive articles. Idyll ex-
poses high-level language constructs about page state that
enable authors to easily parameterize their documents based
on scroll events and component properties such as visibility.
Idyll aims to be easy for non-technical users to pick up, while
still being powerful enough to implement a broad range of
designs. We show how, on first use, undergraduate students
were able to grasp language concepts and produce high quality
interactive articles that leverage a broad range of Idyll features.

Taken together, the human readable markup, reactive vari-
able system, access to page state & events, library of built-in
components, and straightforward extensibility are intended to
lower the barrier to entry for creating interactive articles, and
accelerate their creation by reducing the overall amount of
code and setup needed to produce and publish them. The re-
mainder of the paper discusses related work, shares our design
process, presents Idyll, and, through a series of examples and
a first use study with students, concretely demonstrates how
Idyll simplifies the process of creating interactives.

RELATED WORK
Idyll extends previous work through a novel architecture for
reactive parameterization of custom components, high-level
bindings to page state and events, and by providing the free-
dom of customization and interoperability necessary to fit the
needs of production-quality work.

Figure 2 shows an overview of existing languages and tools
for building interactive and data-driven web pages, plotted on
the dimensions of expressiveness and readability. When look-
ing at these dimensions we consider both the threshold and
the ceiling [26] that the tools impose for creating interactives.
Items below the dotted line on the expressiveness axis have a

low ceiling because they do not provide easy ways for users
to define custom components, limiting the space of designs
that may be produced. Those plotted above that dotted line
do allow for users to include arbitrary custom code, and lan-
guages that implement features that make it easier to achieve
common designs are given higher expressiveness scores. For
example, both Tangle and ArchieML are used within stan-
dard JavaScript, meaning that the authoring environment is
powerful because it has all of JavaScript at its disposal.

The readability axis considers an author writing structured text
with each language. Many of the items plotted take advantage
of a markup language that reduces the amount of code that
an author needs to write to style and add hierarchy to their
text. Some of the tools require users to write in HTML or
JavaScript directly; these tools are shown as having lower
readability. When Idyll is used without custom components,
the markup is relatively simple but expressiveness is limited
by the set of standard components; users may write custom
JavaScript components, which can be arbitrarily complex. A
non-technical user can consider Idyll markup without any
knowledge of the underlying custom component implemen-
tation. From this perspective, the Idyll markup will be of
a similar complexity regardless of the inclusion of custom
components.

Narrative Visualization & Explorable Explainables
The visualization research community has investigated the
techniques that are used in data-driven storytelling, looking
at stories that have been published by news outlets. In 2010,
Segel & Heer [37] articulated a design space of narrative visu-
alization that has influenced the space of narrative techniques
that Idyll and other tools attempt to support. A challenge
for researchers in this space is that the tools and techniques
used by practitioners are constantly shifting. Both Stolper
et al. [38] and McKenna et al. [24] refine Segel & Heer’s
design space, updating it to reflect changes in practice. Re-
searchers have noted several opportunities for work to be done
in this space [19, 21], including evaluating the effectiveness
of data-driven storytelling techniques, and building tools that
help authors use these techniques in their stories. Idyll sup-
ports both of these goals, serving as a tool for authoring and
publishing data-driven stories, but also serving as a platform
for researchers to collect and analyze data about how users
interacted with the stories.

The use of interactivity and visualization in writing extends
beyond journalism, for example into scientific publishing [23,
45]. Bret Victor has written persuasively in favor of adding
certain types of interactivity to writing that would tradition-
ally be presented as static text [43]. His essay Explorable
Explanations [44] illustrates some of the types of interactions
that we seek to enable with Idyll. Victor released a JavaScript
library, Tangle [46], that helps users add reactive variables to
their documents. TangleDown [9] and Fangle [2] both com-
bine Victor’s Tangle library with Markdown syntax. Since
then, a larger movement has built around creating explorable
explanations, many of which are catalogued online [4].

Notably, Distill [14] is an online machine learning journal
with interactive articles and seeks to bridge the gap between

techniques common to news media and academic publishing.
Chris Olah [28], an editor of Distill, wrote on the value of
using interactivity to explain complex topics, arguing that
interactive publishing platforms like Distill could expedite the
dissemination of new research ideas. Distill publishes posts
that utilize visualizations, animations, and linked parameters
in text to explain machine learning research. These posts serve
as inspiration for the types of multimedia storytelling we hope
to enable with Idyll. Distill also publishes the source code
for their articles, which reveals just how much work goes into
creating them: individual articles often require several hundred
custom code commits, made over a period of months.1

Interactive Web Frameworks
Several research systems facilitate end-user creation of data-
driven websites. These tools are aimed at a more general
use-case than Idyll, but are nonetheless informative when
considering programs whose primary output are webpages.
Gneiss [13] is an application that provides a drag-and-drop
interface with which users can create GUI components. These
components may draw their value from cells on a spreadsheet
which may act as a proxy to an arbitrary REST service. Gneiss
lets users pick from a predefined set of UI elements, but does
not provide a compelling way for users to embed their own
custom elements. Mavo [42] is an abstraction on top of HTML
and introduces syntax that allows users to bind data directly
to templated HTML. The tool allows users to author full data-
driven websites without relying on a database service.

Flapjax [25] is a language that brings functional reactive pro-
gramming (FRP) [8] to the web. Flapjax showed that event-
driven reactivity is a natural fit for web applications. FRP has
been shown to be an effective means for enabling expressive
declarative languages in the domains of animation [15] and
visualization [35] specification, and can be similar applied in
this domain. React [3] is a JavaScript library for declaratively
building user interfaces, centered around reactive components.
Idyll is implemented using the React library, and uses an event-
driven reactive parameterization of article specifications.

Other web frameworks utilize a similar component-oriented
architecture, for example Polymer [30] is a JavaScript library
for building applications using Web Components, a new stan-
dard being added to web browsers. These frameworks simplify
web developement, however they still require users to navi-
gate complex application code. Idyll intentionally separates
JavaScript code and editorial copy, so that non-technical users
may still make simple edits to the text of an article without
navigating complex code.

Computational Documents
Computational notebook environments such as Jupyter [29]
are frequently used by programmers and data scientists to
create and share graphics and computations. Observable [27]
is a service that hosts computational notebooks written in
JavaScript, Like Idyll, Observable leverages reactive seman-
tics. However, Idyll targets active reading experiences, in-
cluding layout, navigation, and styling, whereas Jupyter and

1E.g. https://github.com/distillpub/post--building-blocks.

Observable focus on the coding experience using an interface
consisting of a linear list of code and output cells.

Codestrates [32] is a literate computing approach built on web
technologies that allows for more customization of the user
interface than previous approaches. Where Codestrates allows
users to build arbitrary interactive web content, Idyll targets a
more focused range of design outputs. Other computational
document formats include Leisure [12] and Hypercard [7],
which also target the creation of more general applications
than Idyll.

Creating Visualizations & Interactive Graphics
There has been extensive work on tools that facilitate the
production of visualizations and interactive graphics. Idyll is
designed to supplement, rather than supplant, these tools. For
example, D3 [10] is a JavaScript library with which developers
can create expressive data visualizations and Vega-Lite [34] is
a high-level grammar of interactive graphics. Idyll considers
documents in a more unified and structured manner than D3
or Vega-Lite — an Idyll user can easily embed a visualization
created with Vega-Lite or D3 in their article.

Ellipsis [33] provides a DSL and graphical interface for build-
ing narrative visualizations. TimelineStoryteller [11] is a tool
for building narrative timelines. Ellipsis, TimelineStoryteller,
and Idyll all share a concern with parameterizing interactive
visualizations. However, Idyll supports the orchestration of
entire articles, rather than individual components. Several
other tools of graphical interfaces for the design of specialized
graphics. For example, Apparatus [36] is an editor for creating
interactive diagrams; TextAlive [18] is an integrated design
environment for creating kinetic typography videos and, like
Idyll, targets a dual audience of technical and non-technical
users. The systems for creating graphics and other media are
complementary, as, for example, Ellipsis and TimelineStory-
teller could in theory be used to create augmented visualization
components or timelines to be included in an Idyll article.

Editorial Tools for the Web
There have been many efforts to make it easier to write for
the web using a simpler and more concise syntax than HTML.
Markdown [16] is a popular markup language designed to be
fast to write and easy to read. Idyll borrows syntax from Mark-
down in order to leverage users’ familiarity with the language.
Jekyll [1] is a blog engine that allows users to write posts in
plain text or Markdown files and deploy them to the web. Vis-
down [17] extends the idea of compiling Markdown to HTML
pages by allowing authors to specify data visualizations in
their markup. A user can provide a declarative Vega-Lite [34]
specification directly in the Markdown file, and this is used to
render a chart in the final markup. In contrast with Idyll, these
tools do not provide a mechanism that allows JavaScript to be
tightly integrated with the text.

Creating interactive documents involves writing custom
JavaScript and HTML. It can become difficult to balance
the narrative portion of a project with the nitty-gritty de-
tails of code. To this end, The New York Times developed
ArchieML [39], a markup language for editors to work with
text that will subsequently be used in an interactive article.

https://github.com/distillpub/post--building-blocks

ArchieML has been adopted by a number of major newsrooms,
and is used by both technical staff and non-technical editors.
The widespread use of ArchieML shows that editorial staff
are able and willing to pick up simple markup languages in
order to work more closely with technical collaborators. While
ArchieML makes it easy to pull text into code, Idyll makes it
easy to include JavaScript components in text. We contend
that our approach makes the relationship between code and
text easier to reason about from an editorial perspective, and
enables control over where components appear in text and
how they interact with the page. This approach allows Idyll
to eliminate the need to write a large class of code typically
required when producing these articles.

PersaLog [6] is a DSL for dynamic personalization of news
articles. Idyll similarly provides a DSL for interactive articles,
but targets a broader range of components and article designs.

DESIGNING AN INTERACTIVE MARKUP LANGUAGE
The design of Idyll — a markup language for interactive docu-
ments — was informed by prior research and motivated by the
first author’s domain experience working in the digital journal-
ism industry, where cross-platform multimedia and interactive
content must be designed, implemented, and published accord-
ing to a timely newsroom schedule. We aimed to build a tool
that would decrease the overall amount of time necessary to
create and publish such interactive content, and that would
enable a collaborative production process between technical
and editorial users. We iteratively refined a design document
for the language in response to feedback from domain experts
and early use tests, including interviews with professional
journalists and designers.

Requirements
The initial draft of the language was driven by knowledge ar-
ticulated in prior research and obtained by the authors through
industry experience. The first author of this paper spent several
years authoring interactive graphics and articles, and building
tools to support their production and publication across several
major news outlets. We derived a set of requirements from our
findings regarding a number of social and technical issues.

Process
Lee et al. [21] elucidate the process of producing data-driven
stories in their “visual data storytelling process” model. While
this model concerns data-driven storytelling specifically, we
find that it can be applied more generally to the production of
interactive articles: (1) anecdotes, assets, data, and facts are
collected; (2) story copy is written, interactive components
are designed and scripted; (3) editors refine the content and
presentation of the story; (4) the article is published.

This model provides motivation for separating editorial and
technical concerns, a need apparent in the design of other tools
such as ArchieML. We want Idyll to support this workflow.
Editors should be able to edit copy and arrange interactive
widgets without writing code; developers should be able to
easily integrate their code into articles.

Figure 3. A stereotypical behavior of interactive documents: values can
be modified by the reader in order to effect change change elsewhere on
the page. In this example, adapted from the Tangle’s documentation [46],
the number of snacks consumed can be modified, and the sentence up-
dates to show the equivalent amount of calories.

Architecture
Real-world processes are more nuanced than abstract models,
and specific workflows and requirements may vary across insti-
tutions. To support a wide range of workflows, Idyll should be
modular, customizable, and interoperable with existing (and
future) tools for creating interactive graphics. By designing
the tool as a set of composable modules, it may either be used
holistically or customized to support specific use-cases. By
requiring interoperability with other domain-specific tools, we
can build a system that is easy to learn on its own, but also
supports a wide range of outputs.

In order to facilitate editing of the article by non-technical
users, Idyll should support declarative specification of text,
behavior, and layout, rather than requiring imperative code
to update document state. The specification format needs to
be powerful enough to support interactive behavior; for exam-
ple it must be possible to implement the type of dynamism
shown in Figure 3. To achieve this, we draw on functional
reactive programming, which has been shown to be an effec-
tive means for enabling expressive declarative languages, and
can be similar applied in this domain. Idyll uses a reactive
parameterization of the article specification.

Features
While the design space of interactive web articles is a fast-
moving target, prior work has attempted to characterize com-
mon narrative patterns used in data-driven stories and inter-
active articles. McKenna et al. [24] present an analysis of
navigational techniques that are often used, such as scroll-
based navigation (“scrollytelling”), and step-based navigation
(e.g., slideshows). In addition to navigation, designers must
often implement custom behavior across graphics in response
to reader interaction. With currently available tooling, cus-
tom code needs to be written to bind variables to widgets and
track changes to internal state as readers interact with them.
Idyll includes a standard component library to make common
navigation (e.g., scroll- and step-based) and input techniques
straightforward to specify.

Publication
Content published online should be fast to load, compati-
ble with a wide range of browsers and devices, accessible
to screen-readers, and, in some cases, available in multiple lan-
guages. Adhering to the best-practices for serving JavaScript
may require a complex build process to transform the code
that journalists and developers write into something that can

be delivered to a reader. For example, to reduce page load
time, developers must limit the number of network requests
performed and data transferred. To do this, separate scripts are
often compiled into a single file and compressed (e.g., mini-
fied). With Idyll, we seek to support the complex JavaScript
build configurations necessary for publication.

Another concern is the way in which HTML is delivered to
the reader. In typical web applications an HTML document is
rendered by a server, often by querying a database for infor-
mation and injecting that into an HTML template. To reduce
infrastructure costs and deployment complexity, interactive
articles typically do not have a database component, and are
completely encapsulated by the HTML, CSS, and JavaScript
bundle that is delivered to readers. Article content is included
directly in the HTML, and JavaScript code attaches event lis-
teners to this existing content when the page is loaded: this
process is known as hydration. Following best practices, Idyll
should generate the initial HTML before it is sent to the client,
and hydrate interactivity upon page load.

Interviews
After the initial requirements and candidate language speci-
fication were drafted, we solicited feedback from 13 experts
from the fields of digital journalism, education, information vi-
sualization, and scientific publishing, including journalists and
technologists from FiveThirtyEight, The New York Times, and
The Washington Post. Twelve of the experts expressed posi-
tive reactions and acknowledged seeing value in such a tool
(“Overall the declarative nature of creating the interactive
documents here is really neat”, “I kinda feel like it’s the thing
I’ve always wanted, looking at the [markup] for that page is
what convinced me.”). The remaining expert noted that they
were “sometimes puzzled by Markdown specific approaches,”
indicating that they had a hard time seeing how Markdown
could integrate into their existing code-heavy workflow.

The experts provided detailed feedback that included sugges-
tions for changes that would improve workflow (“It might
also be worth supporting comments in the syntax. In our
ArchieML documents, we’ve used comments occasionally to
make suggestions and to explain the syntax a bit to copy ed-
itors”), requests for additional features (“It would be a nice
feature to have a csv to json converter as part of the build”),
and notes about potential technical hurdles (“Async stuff is
always. . . interesting in this sort of project, e.g. if you need to
make chained network requests and do something with the end
result”). We incorporated this feedback into our requirements
document and built the initial version of Idyll.

THE IDYLL LANGUAGE
Idyll is a markup language that targets interactive browser-
based articles, generating HTML, JavaScript, and CSS. An
Idyll document can contain both textual markup using Mark-
down syntax and component markup used to declare variables
and interactive components. Listing 1 shows basic usage of
Idyll syntax. To produce the output, the Idyll compiler takes in
a markup file and creates a list of article components. Figure 4
shows how these components are combined with style infor-
mation in order to produce a webpage that may be published

Figure 4. The Idyll article model. (1) The Idyll compiler transforms in-
put markup into a list of document nodes; (2) each of these nodes has
a dictionary of properties that determine its behavior (optionally includ-
ing a list of children which are recursively rendered). (3) The nodes are
combined with theme and layout information to (4) construct a static
HTML page. When the page is loaded in a browser it is (5) hydrated
with event handlers and a reactive state to drive interface updates.

I am a header

Variables can be declared anywhere:
[var name:"x" value:5 /]

and *Markdown* syntax can be used
for inline styling.

The value of x is [Display value:x format:"d" /].

[Range value:x min:0 max:10 /]

Listing 1. Example Idyll markup: Markdown syntax is extended to
support variable declaration and interactive component specification.
This input file compiles to an HTML, JS, and CSS bundle that can be
rendered by all major web browsers.

online. Idyll implements a reactive runtime that responds to
user input events and updates rendered output in response.

Language Constructs
The basic language primitives in Idyll consist of text, compo-
nents, reactive variables, and style directives.

Text
The most basic building block of an Idyll article is text. Users
can write plain text in Idyll markup and this text will appear in
the rendered output. Text can be written using Markdown syn-
tax, allowing users to easily create lists, headers, blockquotes,
and stylized text (e.g., bold or italicized). Markdown enjoys
widespread use, with a syntax understood by a wide audience
that includes non-technical writers and editors.

Components
Idyll extends Markdown with support for embedded interac-
tive components and variables. The components may either
refer to a standard Idyll component, a third-party component,
or a custom component provided by the author. Components
are specified by a name and parameterized by a list of prop-
erties, the values of which can be dynamic. When a variable
is declared it is added to a global state object that listens for
changes to the variable; upon changing, Idyll will re-render

Figure 5. In Idyll, a document’s variable values can be bound to control widgets, allowing authors to quickly implement components that respond to
user input. This graphic shows how reader interaction propagates through Idyll’s state and affects the rendered output.

any components which depend on the value of that variable.
Idyll must find an implementation for each component in-
cluded in the markup: to do this it matches the name against
author-provided custom components, a standard library of
components, installed third-party components, and — if no
matches are found — valid HTML tags.

Idyll’s standard library of components consists of 26 compo-
nents, chosen to help authors implement a range of common
design goals without writing JavaScript code. While we don’t
expect Idyll to eliminate the need to write code, the standard
library serves to limit the code that users do need to write for
their specific content and story.

The standard library components span four categories:

Presentation components display content on the screen, for
example the Equation component renders typeset LATEX code,
and the Table component renders tabular data.

Input components accept input from users to drive the be-
havior of articles. For example, the Range component adds a
slider that can be bound to a variable; the Select component
displays a list of items in a dropdown menu.

Layout components manipulate how content is displayed.
These components can be used as building blocks to cre-
ate many common designs seen in the narrative visualization
space. For example, the Fixed component defines content
that stays fixed to the screen while a reader scrolls through
an article. The second and third examples in the Examples
section demonstrate the use of several of these components.

Meta components help with behind-the-scenes tasks and do
not modify visible content. Meta components may be used to
add document metadata or usage analytics to an article.

Reactive Variables & State
Idyll maintains an internal state that determines how the com-
ponents are rendered at any point in time. The state consists
of user-declared variables and additional information about
components with respect to the reader’s viewport, for example
whether or not a particular component is in view. Variables
are declared using a similar syntax to components (Listing 1).

Idyll’s variables are reactive: any time the value of a variable
is modified, dependent components are re-rendered to reflect
the change. Figure 5 shows how this works in practice. The
article is rendered as a function of the input content and initial

state; an event occurs that causes the state to be updated, for
example a “click” event occurs when the user clicks a button;
the updated state propagates to the article’s components, and
the webpage is re-rendered to reflect the changes.

Variables are modified in response to events. Idyll exposes
all events provided by the browser’s Document Object Model
(DOM), including clicks (and taps), mouse hover, and key-
board input. It also adds several high-level viewport events that
are useful for defining scroll-driven interactions. For example,
the following code specifies that a custom data visualization
will only animate while it is fully in a reader’s viewport:

[var name:"isAnimating" value:false /]

[CustomDataVisualization
animating:isAnimating
onEnterView:`isAnimating = true`
onExitViewFully:`isAnimating = false` /]

Variables may also be updated by components: a special func-
tion updateProps is provided, which can be called to tell
Idyll to update the value of a variable which is bound to a par-
ticular property of that component. For example, in Listing 1
the Range component’s property value is bound to the Idyll
variable x. When the user interacts with the rendered range
slider, the Range component calls updateProps({ value:
newValue }), and Idyll subsequently updates the value of x.

Style
In web programming, styling of content typically is done using
CSS [22], which can be used to specify colors and typography
as well as element sizing and layout. Idyll adds additional
structure to how articles are styled: the look and feel of an ar-
ticle is determined by its layout, theme, and any custom styles
provided by the article author. The layout is responsible for
the overall page structure, specifying, for example, if the text
container is centered on the page or left aligned, and where the
article title should appear. The theme is responsible for colors,
typography, and component-specific styles. The separation of
form and content offers authors an easy way to view their arti-
cles under a variety of different stylings without making code
changes, while also offering a way for institutional styles to
be applied across an organization’s articles without requiring
authors to adapt their workflow.

Idyll includes two layouts and three themes, which are suitable
for a range of use cases. The blog layout utilizes left aligned

body text with a wide right margin to accommodate the po-
sitioning of complex graphics; the centered layout is a more
traditional center aligned article layout. The three themes
github, tufte, and idyll are different skins inspired by the style
of GitHub READMEs, the print design of Edward Tufte, and
Idyll’s own visual design, respectively. Users can extend and
modify these themes using CSS, and can also install themes
that others have shared.

Implementation
Idyll is implemented via a collection of composable modules.
A command-line tool is used to compile source files and gen-
erate output that can be viewed in a web browser. This output
contains a JavaScript runtime that reactively updates article
components in response to reader actions. These modules are
all available on GitHub as open source software.

Build
Projects are compiled using a node.js-based command-line
tool. Users specify an Idyll markup file as input, along with
any custom interactive components (written in JavaScript)
and datasets. Users can also optionally define custom article
themes and layouts to control the look and feel of the resulting
output (e.g., using CSS). The input markup is transformed by
a compiler into an abstract syntax tree (AST). The nodes in
the AST are matched with interactive components which are
then sent through a JavaScript bundler and minifier, resulting
in a production-ready code package, which can be deployed
to any static web host.

Runtime
The Idyll runtime renders interactive output according to the
bundled AST and JavaScript components. The runtime pro-
vides a reactive variable store implemented using React.js [3],
a reactive web framework. Idyll is compatible with any preex-
isting React components; Idyll users have access to an existing
repository of thousands of open source components.

EXAMPLES
We present a number of example Idyll programs to substantiate
our claims that Idyll (1) reduces the amount of code and effort
needed to create interactives, (2) promotes clear and concise
code, and (3) is able to express a wide range of designs. A va-
riety of full examples have been produced with Idyll, available
for viewing both online and in the supplementary materials.
To open these examples in a browser, see the supplementary
materials or visit http://idyll-lang.org/.

The examples that follow are based on techniques used in
real-world articles, and focus on explaining how specific de-
sign techniques can be achieved concisely using Idyll markup.
They are illustrative of the way in which Idyll’s architecture
and language features eliminate the need for much of the code
that goes into powering interactive articles, and demonstrate
the language’s expressiveness. We encourage readers to view
the examples in a web browser to gain a more intuitive under-
standing of the types of designs and interactivity supported.

Reactive Updates to User Input
A common design in the domain of interactive text is to embed
text and numbers that change based on a reader’s input. The

following is an example taken from Tangle’s documentation,
recreated using Idyll. Figure 3 shows possible output. The
example displays the sentence “When you eat 4 snacks, you
consume 200 calories.” The number 4 is dynamic: a reader
may change its value with a drag interaction, in turn updating
the displayed number of snacks and calories consumed.

The Idyll implementation of this program is shown in Listing 5.
The program starts by declaring the variable snacks and ini-
tializing its value to 4. The following text renders a sentence
with the form “When you eat snacks, you consume

calories”, using Dynamic and Display components
to fill in the blanks. The Dynamic component creates a two-
way binding between the snacks variable and the number
rendered on-screen. The number is rendered with visual cues
showing that it can be dragged, and if the user modifies it, the
new variable value is propagated to dependent components.

Idyll allows expressions to be passed directly as properties,
eliminating the need to create a separate derived variable in
many cases. The Display component renders the value of an
expression, 50∗ snacks. As the user interacts with the snacks
variable, the value displayed is updated. If another variable
is needed for clarity, Idyll’s derived variables can reactively
compute a value based on other variables.

Fixed Sections and Scroll Events
Interactive articles often dynamically update on-screen content
as a reader scrolls through the page, modifying the layout in
more complex ways than in the previous example. For exam-
ple, it is common to have a graphic scroll into view alongside
text, and stay fixed in view until the reader scrolls through to
the next section. To facilitate this type of interaction, Idyll
includes a [Scroller /] layout component that lets authors
declaratively define content that will stay fixed in their readers
viewports’ while they scroll. Listing 3 shows the Idyll markup
necessary to construct such a scrolling experience. Multiple
[Scroller /] components can be listed to define a series of
scroll sections and their associated graphics.

Figure 6 shows an example of an Idyll article that uses this
technique. The article, which interactively explains kernel
density estimation (KDE), displays a fullscreen fixed graphic
that stays in a reader’s viewport while they scroll through the
article. As they reach certain sections, waypoints are triggered
which update Idyll variables, this update in turn causes the
graphic to render in a new state.

One of the benefits of declaratively specifying article compo-
nents in this way is that authors can quickly explore alternative
designs. For example, Listing 2 shows the code for displaying
the same graphic using a stepper design2. Note the similarities
between Listing 3 and Listing 2: both define a graphic compo-
nent and a series of steps and both use a variable to track the
reader’s progression through the content.

Both the Scroller and Stepper components accept properties
that allow authors to further customize their behavior. For

2A stepper can be thought of as a generalization of a slideshow. The
graphic shows the content of only one step at any given time, and is
updated when the currentStep property changes.

http://idyll-lang.org/

[v a r name : " s t e p " value : 0 /]

[S t e p p e r fullWidth : t r u e currentStep :
step]

[Graph ic]
[CustomComponent state : scrollStep

/]
[/ Graph ic]

[T e x t C o n t a i n e r]
[S t ep]
Text for the first section

[/ S t ep]
[S t ep]
Text for the second section

[/ S t ep]
[S t ep]
Text for the third section

[/ S t ep]
[/ T e x t C o n t a i n e r]

[/ S t e p p e r]

[v a r name : " s t e p " value : 0 /]

[S c r o l l e r fullWidth : t r u e currentStep :
step]

[Graph ic]
[CustomComponent state : step /]

[/ Graph ic]

[T e x t C o n t a i n e r]
[S t ep]
Text for the first section

[/ S t ep]
[S t ep]
Text for the second section

[/ S t ep]
[S t ep]
Text for the third section

[/ S t ep]
[/ T e x t C o n t a i n e r]

[/ S c r o l l e r]

[v a r name : " s t a t e " value : " i n i t i a l −
s t a t e " /]

[F ixed fullWidth : t r u e]
[CustomD3Component state : step /]

[/ F ixed]

[S c r o l l e r currentState : step]
[T e x t C o n t a i n e r]

[S t ep state : " i n i t i a l −s t a t e "]
Text for the first section

[/ S t ep]
[S t ep]
This step will not trigger a

state update
[/ S t ep]
[S t ep state : " s econda ry−s t a t e "]
Text for another section

[/ S t ep]
[/ T e x t C o n t a i n e r]

[/ S c r o l l e r]

Listing 2. Idyll markup for stepper-based
navigation, in which a user clicks through
slides of content. At each stage the step
variable is updated, causing the custom
component to update its state.

Listing 3. Idyll markup for scroll-based
navigation, in which a graphic will stick in the
viewport when the user is scrolling through
each step, and release otherwise. The step
variable updates as each step comes into view.

Listing 4. Idyll markup for the layout seen in
Figure 6. A graphic stays fixed fully in the
background while the reader proceeds through
the article. The scroller is used to send state
updates to the graphic based on the reader’s
progress.

[var name:"snacks" value:4 /]

When you eat [Dynamic value:snacks /]
snacks, you consume
[Display value:`50 * snacks` /] calories.

Listing 5. This Idyll markup produces the behavior shown in Figure 3,
displaying a dynamic number which when changed will cause later text
in the sentence to update.

Figure 6. An interactive article explaining Kernel Density Estimation.
The article uses scroll-based interactivity defined declaratively in Idyll
markup. Listing 4 shows the Idyll markup used to specify this layout.
The equations and controls shown in this screenshot were defined in Idyll
markup and reactively parameterize the custom graphic.

example, an author can use the Scroller component with the
disableScroll property to specify the hybrid scroller-stepper
navigation characterized by McKenna et al. [24]. This type of
navigation, which can be seen in popular data-driven stories
such as Rock n’ Poll by Maarten Lambrechts [20], overrides
the browser’s default scroll behavior, requiring readers to click
to scroll to the next section.

Updating a Custom Visualization
The previous example showed how Idyll’s responsive variable
system and built-in components can be used together to cre-
ate interactive experiences without writing custom JavaScript.
However, in many real-world scenarios authors will need to
write code to create custom components for their articles. In
this example we show how responsive variables can be used
to parameterize a custom visualization built with D3. The
interface exposed by Idyll enforces separation of concerns
between editorial issues (the text of the document, order of
sections, events that trigger certain content to be displayed,
etc.) and specific component implementation details.

Figure 7 shows a screenshot of The Etymology of Trig Func-
tions, an interactive blog post made with Idyll. The post uses a
custom visualization in order to illustrate the history of some
trigonometric terms. This story uses interactive text compo-
nents to invite the reader to interact with the graphic as they
progress through the text. The visualization updates as readers
interact with different components on the the page.

Listing 6 sketches how the article in Figure 7 can be created.
The [Action /] tag displays text that can respond to user events,
in this case onMouseEnter, which fires when a reader hovers
their mouse over the text. The Action component is used in
conjunction with the [Fixed /] component, which causes its
contents to remained fixed on-screen in the article’s margin as
the reader scrolls. We also include TrigDisplay, a tag which
instructs Idyll to load a custom JavaScript component in a file
named trig-display.js.

The skeleton of the custom TrigDisplay component code is
shown in Listing 7. A component author must implement
initialize and update functions. The initialize function is
called when the component is first added to the page. The
update function is called every time a relevant Idyll variable
updates, and accepts the new and previous values of the com-
ponent properties as input.

Figure 7. The Etymology of Trig Functions, an interactive blog post writ-
ten with Idyll. This example integrates narrative and graphics through
user interaction with the text. As a user hovers their mouse over stylized
text, the graphic on the right updates to show a geometric interpretation
of the concept being discussed.

[var name:"state" value:"init" /]

...lorem ipsum...

[Action onMouseEnter:`state = "showCosine"`]
Mouse over this text to see the "cosine" state.

[/Action]

...lorem ipsum...

[Fixed position:"right"]
[TrigDisplay state:state /]

[/Fixed]

Listing 6. Idyll markup similar to that used by The Etymology of Trig
Functions, shown above. As a user hovers their mouse over the action
component (which renders stylized text), the state variable will update,
causing the fixed graphic to update.

initialize(node, props) {
// render initial graphics
this.svg = d3.select(node).append('...')

}

update(props, oldProps) {
// update based on new page state
this.svg.selectAll('...')

}

Listing 7. JavaScript interface for custom components. A custom
Idyll component requires implementing two functions: initialize and
update. The initialize function is called only once, on page load, and is
used to render the initial view of the graphic. The update function is
called when a component’s properties change, for example in response
to a user moving a slider or scrolling to a new section.

Figure 8. Usage counts of various language features across student
groups, along with the total unique uses of features per group. The stu-
dents were comfortable using the Markdown syntax, and relied heavily
on Idyll’s standard library of components, reducing the overall amount
of code that they had to write.

These same Idyll mechanisms — Action links, Fixed layout,
and custom components — were used to author the article
shown in Figure 1, which uses an interactive data visualization
to explain the Barnes-Hut approximation of n-body forces.
Hyperlinks and input components embedded in the text pa-
rameterize the main visualization state, while users can also
interact directly with the visualization to explore on their own.

DEPLOYMENT
Idyll has been released as free and open source software, and
has been downloaded over 25,000 times [5] since its initial re-
lease. The code is available at https://github.com/idyll-lang/
idyll, and the language is available for testing in an online
editor at https://idyll-lang.org/editor/. The project has re-
ceived positive feedback from a number of professional jour-
nalists and software developers. When asked about an early
version of Idyll, one Washington Post reporter with JavaScript
experience noted, “I finally played around with Idyll a bit and
it seems great. [I] got everything working with no problem
and the syntax was super easy to use. I didn’t dig too much
into building something crazy, but I still was able to create a
couple custom components and charts.”

Idyll has been well received by the open source programming
community, and has received substantial core code updates
from outside contributors: five external contributors have made
280 code commits to Idyll’s core modules, and others have
helped improve the documentation and examples. Community
members have used the language to make their own examples
and posts. One graphics programmer uses Idyll to power
his personal blog, having converting it from an existing site
powered by Markdown. He commented, “Sharing components
and styles seems to be working really well! . . . Very pleasant
experience overall. Life gets way simpler when you quit trying
to be fancy and just make it work.”

After releasing the initial version of Idyll, the authors worked
with Folo Media, a non-profit news outlet, to produce a data-
driven story about school funding in Texas 3. While the story
was never published for reasons unrelated to Idyll, the pro-
cess was illustrative of how the tool can be used in practice.

3A draft is available at https://mathisonian.github.io/
texas-school-finance/.

https://github.com/idyll-lang/idyll
https://github.com/idyll-lang/idyll
https://idyll-lang.org/editor/
https://mathisonian.github.io/texas-school-finance/
https://mathisonian.github.io/texas-school-finance/

Figure 9. A student-authored Idyll article explaining the conflict-driven
clause learning (CDCL) SAT solver. The article displays custom visu-
alizations parameterized by Idyll variables and standard components.
The detail shown above visualizes a logical formula; readers can use the
buttons to toggle the truth assignment of variables, and see the effects on
clauses and the overall formula.

The story was written by a journalist (who was familiar with
Markdown and had basic experience with the programming
language R, but was otherwise non-technical), was edited by
several non-technical staff members at Folo Media, and re-
quired the creation of several custom components, which were
programmed by the first author. The journalist was able to
pick up Idyll markup basics without issue and saw the value of
the workflow that Idyll enabled, although he hoped for a more
streamlined way to incorporate charts created during data anal-
ysis in R. “Is anyone working on an R wrapper for Idyll? I
feel like your language is like the ideal way for developing in-
teractive narratives. I know folks have been working on ways
to better integrate JavaScript into the R universe.” The editors
did not directly engage with the Idyll markup, instead looking
at drafts of the article in a web browser and sending targeted
notes via chat and email, but they were able to participate in an
iterative design dialog enabled by Idyll’s standard component
library (“What if we made this component a Stepper instead
of a Scroller?”) and decided to add additional content (audio
interviews) to the article after realizing Idyll’s support for such
rich media.

Idyll in the Classroom
An undergraduate data visualization class used Idyll for their
final projects. The computer science students were required
to form groups of four and construct an interactive article that
explained an algorithm of their choice. While students are not
the intended end users of Idyll, they represent a reasonable
proxy for the technical users that we wish to engage. The
students are technically proficient but far from expert web
developers; the study does not speak to usage by non-technical
editorial users. Of the 20 groups, 19 of them successfully used
Idyll to create an interactive article. (One group decided to
focus on making video graphics and opted to embed these
videos directly in HTML.)

Figure 8 shows how the students utilized different language
features in their articles. All student groups were comfortable
using Markdown, and all took advantage of Idyll’s built-in
components. The high use of Idyll’s standard components

Figure 10. This student article, A∗ Search and Dijkstra’s Algorithm, is
motivated by the use of path-finding algorithms in video games. The
students developed a custom game, controlled via Idyll components, in
which players choose optimal search parameters in order to win.

indicates that our standard library reduces the overall amount
of code that authors need to write, as they don’t need to imple-
ment a range of functionality themselves. We found some of
the student usage of HTML tags to be due to students needing
to work around issues in Idyll’s compiler, (for example, many
groups used the [br /] tag to insert extra whitespace where the
compiler had stripped it away), though they also used semantic
tags such as [section] [/section] to group their content.

All but one of the groups included their own custom compo-
nents using Idyll’s JavaScript bundling infrastructure. The
group that did not include any custom Idyll components wrote
their JavaScript separately and included it in the article via
[iframe /] tags. The majority of the custom components that
were developed were algorithm-specific visualization com-
ponents. The basic components provided by Idyll covered a
wide range of use cases for capturing reader input and describ-
ing document layout and scroll behavior, allowing students to
focus on writing code for custom algorithm visualizations.

Figure 9 presents an article about conflict driven clause learn-
ing (CDCL), an algorithm for solving the boolean satisfiability
problem. Using the game Sudoku as motivation, the student
authors walk readers through the steps of CDCL and related
algorithms. The piece concludes with an interactive Sudoku
solver that compares CDCL with another solver. The students
were able to combine standard Idyll components with custom
visualizations to create an engaging visual explanation.

Teams were able to use Idyll to create sophisticated interactive
experiences. Figure 10 shows a screenshot from an article
about A∗ search and Dijkstra’s pathfinding algorithm. The nar-
rative discusses the importance of path-finding algorithms in
video games, and uses interactive graphics to display how the
algorithms would find paths to varying points in game levels.
The students included an interactive game, aStarCommando,
where players tweak parameters of a search algorithm in order
to navigate to a safe house located across the map before they
are killed or captured. The game was parameterized by Idyll’s
reactive variables and controlled by Idyll input widgets.

Figure 11. A student article explaining the Travelling Salesman Problem.
The students leveraged Idyll’s features for modifying styles and layout.
They were able to create a highly personalized page, incorporating both
scroll- and step-based navigation.

Some students took advantage of Idyll’s layout components
and flexibility with styling. Figure 11 shows an article on
the classic Travelling Salesman Problem (TSP). The student
authors of this article customized the color theme, typography,
and standard component styles. They used Idyll’s variables
and components to power interactive maps, upon which dif-
ferent TSP algorithms are demonstrated. The students used
a combination of scroll-based and step-based navigation to
produce an article with a sophisticated look and feel.

While students had few issues picking up the basic syntax and
workflow, some faced initial difficulties adjusting to the declar-
ative, reactive nature of Idyll markup. Rather than coordinate
interaction via Idyll variables and component properties, some
students attempted to code coordination themselves by setting
and reading global variables in JavaScript. Others sought to
invoke methods defined on custom components directly from
the markup.

LIMITATIONS
While the results of the classroom study indicate that technical
users are able to use Idyll to create a range of designs, the study
does not speak to usage by non-technical editorial users. We
believe that the widespread adoption of ArchieML, along with
the feedback we’ve received from journalists, show that these
users are willing and able to adopt simple markup languages.
A more targeted study is needed to say how usable Idyll is for
editorial users in its current form, and what additional training,
if any, would be necessary for them to use the tool effectively.

Idyll does not eliminate the need for writing JavaScript code
to create custom graphics. Custom Idyll components can
grow to become arbitrarily complex, and beyond providing
reactivity, Idyll doesn’t do much to decrease the complexity
of these custom graphics. A closer integration with tools that
focus on the creation of custom graphics may be needed in
order to lower the threshold for creating articles that include
custom components. Idyll might also benefit from a closer
integration with other existing data science tools, as many data
journalists use tools like R and Python to create static graphics.
A more streamlined workflow might, for example, allow a user

to embed R code directly in their markup and have a static
graphic be generated at compile time.

Idyll’s two-way variable binding allows components to trig-
ger page updates by modifying Idyll variables via a special
function, however two-way binding to derived variables is
not supported. This distinction may be confusing to some
users, and it may be addressed in a future version by adding a
constraint solver to Idyll’s runtime.

FUTURE WORK
While Idyll is already a useful tool, we see a variety of oppor-
tunities for future research and extensions.

Evaluation. As Kosara & Mackinlay [19] point out, “Con-
trolled studies today are often done in the lab, and typically
within a relatively short time frame. Evaluation of stories
will require a very different approach, to account for different
scenarios and to reflect real-world uses.” Idyll offers a path
forward in increasing our understanding of the effectiveness
of stories: because of the centralized state management, track-
ing reader interactions with a story just means listening for
changes to the central store. Idyll offers an API to listen for
these changes, making it straightforward to collect structured
analytics and empowering future work on evaluation.

Retargeting. The declarative nature of Idyll markup makes it
possible to use alternative renderers to target additional output
formats. Idyll can be adapted to generate interactive native iOS
and Android applications (using the React Native renderer);
we also have early support for LATEX output. These alternative
renderers suggest that it is possible to extend Idyll such that
authors can choose from a list of possible output targets (e.g.,
web, mobile web, mobile native, PDF), generating output
that is interactive where possible and gracefully degrading in
environments that do not support interactivity. This flexibility
is particularly desirable for scientific publishing, where authors
are required to submit static documents to conferences and
journals but may also wish to provide a web-based interactive
version of their work.

Visual Editing. Non-technical users may prefer to write text
in a visual what-you-see-is-what-you-get (WYSIWYG) editor.
Such an editor has the potential to lower the threshold for
adding dynamism to static text, but there are major design
challenges when building an editor to not only specify text,
but also interactive behavior and layout. Idyll markup could
provide a convenient output target for such an editor and serve
as a file format, abstracting away technical issues involved
in compiling interactive output, lowering the barrier to create
such an editor.

CONCLUSION
We contribute Idyll, a novel domain-specific language for cre-
ating interactive narratives. Idyll combines a simple markup
language with reactive JavaScript components to reduce the
amount of code and effort needed to produce and publish in-
teractive articles. Code, examples, and documentation are
available online at https://idyll-lang.org/.

https://idyll-lang.org/

REFERENCES
1. 2008. Jekyll. (2008). Retrieved August 1, 2017 from
https://jekyllrb.com/

2. 2013. Fangle. (2013). Retrieved September 19, 2017 from
https://github.com/jotux/fangle

3. 2015. React. (2015). Retrieved August 1, 2017 from
https://facebook.github.io/react/

4. 2017. Explorable Explanations Web Catalog. (2017).
Retrieved August 1, 2017 from http://explorabl.es/

5. 2017. Idyll download count. (2017). Retrieved August 1,
2017 from
https://npm-stat.com/charts.html?package=idyll

6. Eytan Adar, Carolyn Gearig, Ayshwarya
Balasubramanian, and Jessica Hullman. 2017. PersaLog:
Personalization of News Article Content. In Proceedings
of the 2017 CHI Conference on Human Factors in
Computing Systems (CHI ’17). ACM, New York, NY,
USA, 3188–3200. DOI:
http://dx.doi.org/10.1145/3025453.3025631

7. Bill Atkinson. 1988. Hypercard. Apple Computer.

8. Engineer Bainomugisha, Andoni Lombide Carreton,
Tom van Cutsem, Stijn Mostinckx, and Wolfgang de
Meuter. 2013. A Survey on Reactive Programming. ACM
Comput. Surv. 45, 4, Article 52 (Aug. 2013), 34 pages.
DOI:http://dx.doi.org/10.1145/2501654.2501666

9. Nicholas Bollweg. 2011. TangleDown. (2011). Retrieved
September 19, 2017 from
https://github.com/bollwyvl/TangleDown

10. Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer.
2011. D3: Data-Driven Documents. IEEE Trans.
Visualization & Comp. Graphics (Proc. InfoVis) (2011).
http://vis.stanford.edu/papers/d3

11. Matthew Brehmer, Bongshin Lee, Benjamin Bach,
Nathalie Henry Riche, and Tamara Munzner. 2017.
Timelines Revisited: A Design Space and Considerations
for Expressive Storytelling. Transactions on Visualization
and Computer Graphics (TVCG) 23 (September 2017),
2151 – 2164.

12. Bill Burdick. 2011. leisure.
https://github.com/zot/Leisure. (2011).

13. Kerry Shih-Ping Chang and Brad A. Myers. 2017. Gneiss:
spreadsheet programming using structured web service
data. Journal of Visual Languages & Computing 39,
Supplement C (2017), 41 – 50. DOI:
http://dx.doi.org/https:

//doi.org/10.1016/j.jvlc.2016.07.004 Special Issue on
Programming and Modelling Tools.

14. Distill. 2017. Latest articles about machine learning.
(2017). Retrieved September 19, 2017 from
https://distill.pub/

15. Conal Elliott and Paul Hudak. 1997. Functional Reactive
Animation. In International Conference on Functional
Programming. http://conal.net/papers/icfp97/

16. John Gruber. 2004. Markdown. (2004). Retrieved August
1, 2017 from
https://daringfireball.net/projects/markdown/syntax/

17. Amit Kapoor. 2016. Visdown. (2016). Retrieved August
1, 2017 from http://visdown.amitkaps.com/

18. Jun Kato, Tomoyasu Nakano, and Masataka Goto. 2015.
TextAlive: Integrated Design Environment for Kinetic
Typography. In Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems
(CHI ’15). ACM, New York, NY, USA, 3403–3412. DOI:
http://dx.doi.org/10.1145/2702123.2702140

19. Robert Kosara and Jock Mackinlay. 2013. Storytelling:
The next step for visualization. Computer 46, 5 (2013),
44–50.

20. Maarten Lambrechts. 2016. Rock ’n Poll: Polls explained
with interactive graphics.
https://web.archive.org/web/20180307013513/http:

//rocknpoll.graphics/. (2016).

21. Bongshin Lee, Nathalie Henry Riche, Petra Isenberg, and
Sheelagh Carpendale. 2015. More than telling a story:
Transforming data into visually shared stories. IEEE
computer graphics and applications 35, 5 (2015), 84–90.

22. Hakon Wium Lie and Bert Bos. 2005. Cascading style
sheets: designing for the Web. Addison-Wesley
Professional.

23. Kwan-Liu Ma, Isaac Liao, Jennifer Frazier, Helwig
Hauser, and Helen-Nicole Kostis. 2012. Scientific
storytelling using visualization. IEEE Computer
Graphics and Applications 32, 1 (2012), 12–19.

24. S McKenna, N Henry Riche, B Lee, J Boy, and M Meyer.
2017. Visual Narrative Flow: Exploring Factors Shaping
Data Visualization Story Reading Experiences. In
Computer Graphics Forum, Vol. 36. Wiley Online
Library, 377–387.

25. Leo A Meyerovich, Arjun Guha, Jacob Baskin,
Gregory H Cooper, Michael Greenberg, Aleks Bromfield,
and Shriram Krishnamurthi. 2009. Flapjax: a
programming language for Ajax applications. In ACM
SIGPLAN Notices, Vol. 44. ACM, 1–20.

26. Brad Myers, Scott E. Hudson, and Randy Pausch. 2000.
Past, Present, and Future of User Interface Software Tools.
ACM Trans. Comput.-Hum. Interact. 7, 1 (March 2000),
3–28. DOI:http://dx.doi.org/10.1145/344949.344959

27. Observable 2018. Observable. https://observablehq.com/.
(2018).

28. Chris Olah and Shan Carter. 2017. Research Debt. Distill
(2017). Retrieved August 1, 2017 from
http://distill.pub/2017/research-debt

29. Fernando Pérez and Brian E. Granger. 2007. IPython: a
System for Interactive Scientific Computing. Computing
in Science and Engineering 9, 3 (May 2007), 21–29. DOI:
http://dx.doi.org/10.1109/MCSE.2007.53

https://jekyllrb.com/
https://github.com/jotux/fangle
https://facebook.github.io/react/
http://explorabl.es/
https://npm-stat.com/charts.html?package=idyll
http://dx.doi.org/10.1145/3025453.3025631
http://dx.doi.org/10.1145/2501654.2501666
https://github.com/bollwyvl/TangleDown
http://vis.stanford.edu/papers/d3
https://github.com/zot/Leisure
http://dx.doi.org/https://doi.org/10.1016/j.jvlc.2016.07.004
http://dx.doi.org/https://doi.org/10.1016/j.jvlc.2016.07.004
https://distill.pub/
http://conal.net/papers/icfp97/
https://daringfireball.net/projects/markdown/syntax/
http://visdown.amitkaps.com/
http://dx.doi.org/10.1145/2702123.2702140
https://web.archive.org/web/20180307013513/http://rocknpoll.graphics/
https://web.archive.org/web/20180307013513/http://rocknpoll.graphics/
http://dx.doi.org/10.1145/344949.344959
https://observablehq.com/
http://distill.pub/2017/research-debt
http://dx.doi.org/10.1109/MCSE.2007.53

30. Polymer Project 2017. Polymer Project.
https://www.polymer-project.org/. (2017).

31. National Public Radio. 2016. dailygraphics.
https://github.com/nprapps/dailygraphics. (2016).

32. Roman Rädle, Midas Nouwens, Kristian Antonsen,
James R. Eagan, and Clemens N. Klokmose. 2017.
Codestrates: Literate Computing with Webstrates. In
Proceedings of the 30th Annual ACM Symposium on User
Interface Software and Technology (UIST ’17). ACM,
New York, NY, USA, 715–725. DOI:
http://dx.doi.org/10.1145/3126594.3126642

33. Arvind Satyanarayan and Jeffrey Heer. 2014. Authoring
Narrative Visualizations with Ellipsis. Comput. Graph.
Forum 33, 3 (June 2014), 361–370. DOI:
http://dx.doi.org/10.1111/cgf.12392

34. Arvind Satyanarayan, Dominik Moritz, Kanit
Wongsuphasawat, and Jeffrey Heer. 2017. Vega-Lite: A
Grammar of Interactive Graphics. IEEE Trans.
Visualization & Comp. Graphics (Proc. InfoVis) (2017).
http://idl.cs.washington.edu/papers/vega-lite

35. Arvind Satyanarayan, Kanit Wongsuphasawat, and
Jeffrey Heer. 2014. Declarative Interaction Design for
Data Visualization. In ACM User Interface Software &
Technology (UIST).
http://idl.cs.washington.edu/papers/reactive-vega

36. Toby Schachman and Joshua Horowitz. 2016. Apparatus.
https://github.com/cdglabs. (2016).

37. Edward Segel and Jeffrey Heer. 2010. Narrative
Visualization: Telling Stories with Data. IEEE Trans.
Visualization & Comp. Graphics (Proc. InfoVis) (2010).
http://vis.stanford.edu/papers/narrative

38. Charles D Stolper, Bongshin Lee, N Henry Riche, and
John Stasko. 2016. Emerging and recurring data-driven
storytelling techniques: Analysis of a curated collection
of recent stories. Microsoft Research, Washington, USA
(2016).

39. Michael Strickland, Archie Tse, Matthew Ericson, and
Tom Giratikanon. 2015. Archie Markup Language
(ArchieML). (2015). Retrieved August 1, 2017 from
http://archieml.org/

40. Tampa Bay Times. 2016. lede.
https://github.com/tbtimes/lede. (2016).

41. The New York Times. 2017. kyt.
https://github.com/NYTimes/kyt. (2017).

42. Lea Verou, Amy X. Zhang, and David R. Karger. 2016.
Mavo: Creating Interactive Data-Driven Web
Applications by Authoring HTML. In Proceedings of the
29th Annual Symposium on User Interface Software and
Technology (UIST ’16). ACM, New York, NY, USA,
483–496. DOI:
http://dx.doi.org/10.1145/2984511.2984551

43. Bret Victor. 2006. Magic Ink: Information Software and
the Graphical Interface. Retrieved August 1, 2017 from
http://worrydream.com/MagicInk/

44. Bret Victor. 2011a. Explorable Explorations. Retrieved
August 1, 2017 from
http://worrydream.com/ExplorableExplanations/

45. Bret Victor. 2011b. Scientific Communication As
Sequential Art. http://worrydream.com/
ScientificCommunicationAsSequentialArt/.

46. Bret Victor. 2011c. Tangle: a JavaScript library for
reactive documents. Retrieved August 1, 2017 from
http://worrydream.com/Tangle/

https://www.polymer-project.org/
https://github.com/nprapps/dailygraphics
http://dx.doi.org/10.1145/3126594.3126642
http://dx.doi.org/10.1111/cgf.12392
http://idl.cs.washington.edu/papers/vega-lite
http://idl.cs.washington.edu/papers/reactive-vega
https://github.com/cdglabs
http://vis.stanford.edu/papers/narrative
http://archieml.org/
https://github.com/tbtimes/lede
https://github.com/NYTimes/kyt
http://dx.doi.org/10.1145/2984511.2984551
http://worrydream.com/MagicInk/
http://worrydream.com/ExplorableExplanations/
http://worrydream.com/ScientificCommunicationAsSequentialArt/
http://worrydream.com/ScientificCommunicationAsSequentialArt/
http://worrydream.com/Tangle/

	Introduction
	Related Work
	Narrative Visualization & Explorable Explainables
	Interactive Web Frameworks
	Computational Documents
	Creating Visualizations & Interactive Graphics
	Editorial Tools for the Web

	Designing an Interactive Markup Language
	Requirements
	Process
	Architecture
	Features
	Publication

	Interviews

	The Idyll Language
	Language Constructs
	Text
	Components
	Reactive Variables & State
	Style

	Implementation
	Build
	Runtime

	Examples
	Reactive Updates to User Input
	Fixed Sections and Scroll Events
	Updating a Custom Visualization

	Deployment
	Idyll in the Classroom

	Limitations
	Future Work
	Conclusion
	References

